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Abstract 

In order to model the dynamic behavior of the tire on soft soil, a lumped mass discretized tire model using 

Kelvin-Voigt elements is developed. To optimize the computational time of the code, different techniques 

were used in memory allocation, parameter initialization, code sequence, and multi-processing. This has 

resulted in significant improvements in efficiency of the code that can now run close to real time and therefore 

it is suitable for use by commercially available vehicle simulation packages.   

Model parameters are obtained using a validated finite element tire model, modal analysis, and other 

experimental test procedures. Experimental tests were performed on the Terramechanics rig at Virginia Tech. 

The tests were performed on different terrains (such as sandy loam) and tire force and moments, soil sinkage, 

and tire deformation data were collected for various case studies based on a design of experiment matrix. This 

data, in addition to modal analysis data were used to validate the tire model. Furthermore, to study the validity 

of the tire model, simulations at conditions similar to the test conditions were performed on a quarter car 

model. The results have indicated the superiority of this model as compared to other lumped parameter models 

currently available. 
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1 Introduction 

The tire forces and moments depend on the structural behavior of the tire, as well as tire-terrain interaction. 

Therefore, based on the simulation application (e.g., handling, ride, mobility, durability), and type of the terrain (e.g., 

deformable, non-deformable, even, uneven) the approach for modeling the tire and the terrain would be different. The 

tire models that are used for vehicle simulation on mainly non-deformable terrains, such as FTire [1], RMOD-K [2, 

3], CDTire [4], can be categorized based on usage, accuracy, computational efficiency, and degree of parameterization. 

The number of degrees-of-freedom (DOFs) and consequently the computational effort in these models can be sorted 

from empirical models (lowest) to finite element models (highest). 

A direct application of an on-road tire model to simulate tire performance on soft soil is not possible. This is due 

to the fact that traveling on deformable terrain raises issues for which on-road tire models do not account for. 

Moreover, the kinetics and kinematics of the tire on deformable terrains are subjected to different design and 

operational factors, as well as field characteristics. These factors, in addition to the uncertainties that exist in their 

parameterization, make the formulation of tire-terrain interaction a highly complex problem. Due to this complexity, 

the number of tire models, similar to the one developed in this research that are usable in conjunction with multibody 

dynamic vehicle simulation models, are limited.  

The proposed process of developing the complete soft soil tire model can be divided into two main sub-processes 

of mathematical modeling and physical modeling, as shown in Figure 1. For the mathematical modeling, different 

components of the system, such as tire material, tire structure and tire-ground interaction are described using semi-

empirical mathematical correlations. Next, these mathematical models are implemented using a programing language, 

such as MATLAB. The developed code is checked to confirm that the model is correctly implemented and is free of 

errors. Meanwhile, a physical representation of the problem is essential to provide an insightful look into the real 

world situation. In this regard, an experimental test rig is designed for conducting the related case studies. The type 

and configuration of these experiments, which are required for validating and parameterizing the implemented sub-

models, are developed as a design of experiment table.  
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Figure. 1 - Tire modeling on the soft soil: Modeling, simulation, and experimental procedures work flow. 

 

Using the parameters derived for the computational model, simulations are performed at conditions similar to the 

experiments. The results from this step are iteratively generated and compared to the test data until the acceptable 

agreement is achieved. In case the correlation accuracy was not achieved after extensive simulation iterations, the 

judgment is made whether to make changes to one of the sub-models, experimental setup, parameterization 

procedures, or all of the above.  In the following sections, first a brief literature survey for the available tire models 

that are designed for estimating the tire performance on deformable surfaces is given. Next, steps that are required for 

accurately characterizing the tire structure behavior are elaborated in more details. It should be mentioned that the 

development of the tire-ground interaction model is discussed in a companion paper [5]. Representative simulation 

results for the newly developed tire model, called Hybrid Soft Soil Tire Model (HSSTM) are discussed.  

2 Literature Survey  

As mentioned earlier, the main challenge in studying the behavior of the vehicle in off-road condition is 

characterizing the tire-terrain interaction. Throughout the years, a wide variety of models have been developed for 
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formulating and simulating this interaction. The degree of complexity for these models is based on the application, 

accuracy, and computational cost. Generally, these models can be grouped into three main categories [6]: 1) Empirical 

models, 2) semi-empirical models, and 3) physics-based models. The literature survey included in this paper is brief, 

but the authors published an extensive review paper on this topic, and the reader is encouraged to refer to [6] 

2.1 Empirical models 

The empirical models use the experimental data of the tire response, and correlate it to the influential parameters 

of the system via mathematical equations. One of the most famous empirical models is the Magic Formula Tire Model, 

presented by Pacejka [7]. This model is based on the tire steady-state response data, and relates the tire forces and 

moments to wheel pure slip values 

Empirical models are very useful as simple tools for evaluating the performance of the vehicles in conditions 

similar to the test environment and with tire properties similar to the test tire [2, 8-10]. Due to these limitations, 

empirical models cannot be used for extrapolating the results to the problems outside the scope of the specific 

experimental tests under which the data has been obtained. Thus, a new tire design concept or a new operating 

condition for testing the tire performance cannot be studied using this family of tire models. The empirical models 

developed for passenger and truck size tires do not scale perfectly to the smaller size tires, such as tires in robotic 

applications and planetary exploration vehicles. Furthermore, empirical tire models require several sets of data for 

their parameter estimation process that increases the cost of experimental procedure.  

2.2 Physics based models 

A tire on road is constantly excited by road unevenness with short and long wavelengths. Consequently, it operates 

as a filter over the road roughness. Capturing the tire-road interaction for road inputs with high frequency (short 

wavelengths), relative to the size of the contact patch, is more complex. The tire response at the spindle of the tire is 

usually smoother than the shape of the obstacle. This behavior has two main reasons; first, when the tire travels over 

an obstacle, such as a cleat, the forehead of the tire touches the obstacle before the wheel center. Therefore, the distance 

traveled by the tire while interacting with an obstacle is longer than the length of the obstacle. Second, the tire has 

some flexibility at its contact patch, which almost swallows the small irregularities during the enveloping process [11]. 

Capturing this filtering performance is the main motive for several physic-based tire models. 
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Physics based models incorporate the physical principles and analytical methods to represent tire and terrain 

structures in addition to their interaction [12]. This multi-disciplinary field of models incorporates applied 

mathematics, numerical analysis, computational physics, and even computer graphics to evaluate the performance of 

wheeled vehicles [13].  The degree of complexity varies from the simple models that consider tire as a rigid ring and 

terrain as a spring-damper system to very detailed models that use finite element formulation for both tire and terrain 

[14, 15].  

2.3 Semi-empirical models 

Mechanical behavior of the tire and tire-terrain depends on many aspects, such as tire geometrical and material 

properties, in addition to terrain texture and frictional characteristics. Identifying all of these parameters and 

correlating them to the vehicle performance using empirical closed-form formulations are limited to the similar test 

conditions. On the other hand, using the simple physics-based methods to model the terrain can lead to significant 

errors in both estimating model parameters and capturing terrain mechanics. This will ultimately cause the vehicle 

response to deviate from the experimental data. One alternative numerical method for analyzing vehicle performance 

is the semi-empirical models [16-19]. In this category of tire models, the tire structure is usually modeled by analytical 

equations and the terrain is defined using empirically derived models [20]. These models are best nominees for 

dynamic vehicle simulations because they are a trade-off between accuracy and computational efficiency [11-13]. 

The majority of the models in this field use the two-dimensional empirical formulation developed by Bekker and 

Wong [21-28]. In these formulations, the tire is commonly considered as a rigid cylinder, and the normal and shear 

stresses in the tire contact patch are expressed as functions of the tire kinetics and kinematic variables. Consequently, 

the corresponding stress components are integrated over the contact patch to calculate the spindle forces, tire sinkage, 

soil deformation, tire deflection, etc. The more sophisticated tire models use a finite element representation for either 

tire structure or tire-ground interaction.  

The proposed tire model is considered as a semi-empirical tire model because it takes a physics-based lumped 

parameter approach for describing the tire structural response in addition to a semi-empirical method for characterizing 

the tire-terrain interaction.  
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3 Tire material modeling 

A typical modern tire is manufactured from nearly 10-35 different components. Information about tire material 

properties, processing, mixing, assembly, and curing are almost always confidential, and cannot be received from tire 

companies. Furthermore, the material properties for the same tire from a manufacturer may vary, due to the 

vulcanization process, for example. In order to accurately estimate the behavior of the tire components, elaborate 

material models are needed. The parameterization of these models for individual materials in the tire requires 

performing extensive experimental and analytical procedures, such as elastic and viscoelastic tests on individual tire 

sections. This level of detail is required for calculating the accurate stress and strains in the tire structure, which would 

be helpful in the design stage of the tire.  

The main scope of this study is to estimate the tire mobility performance factors including forces and moments at 

the tire spindle. Therefore, simplified methods are chosen for describing the tire material behavior, such as 

hyperelasticity and viscoelasticity. 

3.1 Hyperelasticity 

A great portion of the tire structure consists of vulcanized elastomers, such as rubber material. Rubber has a 

nonlinear and incompressible behavior toward loading, which is independent of the strain rate. This behavior is known 

as hyperelasticity, and the material which shows this behavior is called green elastic material or hyperelastic. A 

hyperelastic material differs from an elastic material in four main aspects: 

 The tire has a high stiffness in the initial step of loading, and dramatically softens in the unloading phase. 

This phenomenon is known as Mullin’s effect.  

 Instead of having a hysteresis loop in the stress-strain curves of the loading cycle, the hyperelastic materials 

have a simple equilibrium curve.   

 The hyperelastic materials exhibit different behavior in tension and compression. This is in contrast with the 

Hooke’s law, which considers the stress to be proportional to strain. As a matter of fact, hyperelastic materials 

such as rubber, have a higher stress magnitude in compression when compared to the tension for an identical 

strain magnitude.  
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 Finally, a hyperelastic material has different modes of deformation that should be studied with respect to the 

given loading conditions. Each deformation mode requires corresponding constants in the material model 

that must be characterized experimentally. The choice of model constants and required parameterization tests 

should be done with care in order to avoid false analytical system response quantities that are not present in 

the experiments.  

The hyperelasticity feature of the rubber should be enhanced with the viscoelasticity in order to precisely describe the 

rate-dependent loading/unloading force-deflection characteristics of the tire.  

3.2 Viscoelasticity 

Viscoelastic materials show a combined elastic and viscous rate-dependent behavior when experiencing 

deformation [29]. In elastic materials, once the applied stress or strain is removed, the specimen quickly returns to its 

initial condition. On the other hand, viscous materials exhibit a resistance toward the shear flow developed due to the 

applied stress or strain. In other words, upon applying a constant strain, the material creeps. Similarly, by applying a 

constant stress, the strain increases and then eventually decreases with time.  

The internal damping, rolling resistance, and thermal characteristics of a tire are associated with the viscoelastic 

property of the rubber. Therefore, in order to properly quantify the transient response of the tire, the viscoelastic 

material property should be incorporated. For small strains, the linear viscoelasticity assumption may be chosen. In 

this case, the relaxation rate of the material is proportional to the immediate stress, and the total viscoelastic behavior 

can be expressed using the superposition principle. 

3.3 Modeling procedure 

There are different mechanical models that can describe the combined hyperelastic viscoelastic characteristics of 

a material. Each of the mechanical models considers a certain form of stress or strain response for the material under 

different loading conditions. The hyperelasticity of the tire is modeled by interpolating the tire load vs. deflection data 

in compression/tension loading/unloading scenarios. Using this approach allows us to define different loading stiffness 

for loading and unloading paths.  

To include viscoelasticity, three main models considered which are Maxwell model, Kelvin-Voigt model, and 

Standard Linear Solid model [30]. For the Maxwell model, the viscoelasticity is modeled using a damping element 
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(Newtonian dashpot) connected to a Hookean spring (stiffness element) in a series configuration. Considering the fact 

that the Maxwell model exhibits the unrestricted flow of material during loading, it isn’t desirable for the rubber 

element modeling. For the Kelvin-Voigt element, the stiffness and the damping elements are connected to each other 

in a parallel configuration. The force-deflection characteristics of this model for force step input and deflection step 

input are shown in Figure 2.  

 
Figure. 2 - The force-deflection characteristics of the Kevin-Voigt model for force step input and deflection 

step input.  

 
 

For this type of element, the force-deflection relation under axial loading has the following form: 

dt

d
k


   (1)  

Where k is the axial stiffness,  is the damping stiffness,  is the element strain, and  is the applied stress. It should 

be noted that stress and strain of the element are analogous to the force and deflection.  In the multi-axial loading the 

equation of motion is written as  

dt

de
KeS

ij

ijij   (2)  

In which K is the time-dependent bulk modulus, and ijS is the element compliance. Another material model of interest 

is the Standard Linear Model (SLM), which is a Maxwell model that is connected to another stiffness element in a 

parallel configuration. It is cumbersome to solve for the stress value in the Maxwell arm, since it contains both the 
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stress and its derivative. Therefore, the Kevin-Voigt element is used as the main force element between tire/rim 

elements due to the fact that it is more accurate compare to the Maxwell model, and easier to solve for the stress values 

compare to the SLM.  

4 Tire structure modeling 

As it was discussed earlier, the detailed modeling of the tire structure is not required for studying the mobility of 

the tire. This is due to the fact that, for evaluating the tire performance, only a limited number of parameters are 

needed, such as forces and moments at the spindle, and wheel sinkage. Therefore, modeling the tire with a coarse level 

of tire structure discretization would be adequate, and can result in a fast computational time. This feature is essential 

for full vehicle simulations and control applications. The lumped parameter models reduce the DOFs in the model in 

favor of the computational effort, and consider the simplified material models in the respective directions. Such a 

method is used in HSSTM for representing the tire structure.  

In the early phase of the project, a simplified lumped mass approach for modeling the tire structure was introduced 

by Pinto [31-33]. This approach considered the tire structure as three layers of lumped masses, in which the masses 

are connected to the rim and also to each other through a set of linear spring and dampers. This three-layer structure 

approach is an advanced version of a lumped mass single layer on-road tire model developed by Umsrithong [34-39].  

In 2012, an advanced method for modeling the tire was introduced [29], and a more systematic approach was used for 

developing the software. In this new approach, the tire belt is discretized circumferentially in multiple belt segments 

that are suspended on the rim using Kelvin-Voigt elements, which include variable stiffness and damping. These 

nonlinear elements capture the effect of the temperature and pressure changes on the tire mechanical characteristics 

through a set of empirical equations. Each belt segment is divided into a series of lumped masses connected to each 

other with in-plane and out-of-plane spring and dampers. The dynamics of these lumped masses, in addition to wheel, 

is described in a state-space representation. The state is a set of variables that, along with the time step, characterize 

the individual configuration of the system at any instance of time. The state variables are defined by equations of 

motion, and can be positions, velocities, acceleration, force, moment, torque, pressure, and etc. The state variables 

that are described using the differential equations are called state differential variables, and those that are defined 

directly from dynamic conditions, are called extra state variables. The standard notational convention for describing 
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a state-space representation is as follows: 

State equation: ]1[][]1[][]1[

.

)()()()()(   MMNNNNN tutBtqtAtq  (3) 

Output equation: ]1[][]1[][]1[ )()()()()(   MMPNNPP tutDtqtCtv   (4) 

Where )(tq  is the state vector, )(
.

tq  is the derivative of the state vector, 𝐴(𝑡) is the state matrix, 𝐵(𝑡) is the input 

matrix, 𝐶(𝑡) is the output matrix, 𝐷(𝑡) is the direct transmission matrix, 𝑢(𝑡) is the input vector, )(tv  is the output 

vector, N is the number of states, M is the number of input variables, and P is the number of output variables. It should 

be noted that the input, output, and state vectors, as well as all the state-space representation matrices are time 

dependent. The choice of the state variables for different sections of the tire model is not unique, and would be 

discussed accordingly in the following sections. The type of mathematical model used to represent the tire structure 

is called a tire realization.  

After discretizing the tire into smaller elements, we can express the dynamics of each element using a set of first 

order and second order differential equations. The second order differential equations can be rearranged as a set of 

first order ODEs. The complete set of the ODEs can be shown as follows: 
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Where  Nif i ,...,1 , and  Njf j ,...,1 𝑔𝑗  (𝑗 = 1 … 𝑃) include the following: (1) nonlinear functions of states 

and/or inputs, such as Sin and Cos functions, (2) terms with states and/or inputs appearing as powers of something 

other than 1 and 0, (3) terms with cross products of states and/or inputs. As a results, the multi-segments model that 

represent the tire characteristics is an autonomous (time-variant) non-linear system.   
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4.1 Coordinate system convention 

Before defining the state variables of the system, the coordinate systems for the sign convention must be defined. 

The definitions for the coordinate systems used in this study are similar to the Tyre Data Exchange format (TYDEX). 

TYDEX is a conventional interface between tire measurements and tire models developed and unified by an 

international tire working group to make the tire measurement data exchange easier. Additionally, TYDEX introduce 

an interface between the tire model and simulation tool called Standard Tire Interface (STI), which would be described 

in detail later on. 

Along with the global reference frame, one additional right-hand orthogonal axis system used is the C-axis system 

(center axis system), as shown in Figure 3. The angles of rotation illustrated in this figure are: a positive slip angle α, 

a positive inclination angle γ, and a positive wheel rotation speed ω. The C-axis coordinate origin is mounted at the 

center of the wheel rim. The cX  axis is in the central wheel plane and is parallel to the ground. The central wheel 

plane is constructed by decreasing the width of the wheel until it becomes a rigid disk with zero width. The cY axis is 

same as the spin axis of the wheel and rotates with the inclination angle γ. The cZ  axis is in the central plane of the 

wheel, point upwards, and turns with the inclination angle γ (camber).  

 
Figure. 3 - The representation of the C-axis coordinate system.   

4.2 Wheel system  

The rim kinematics can be described using six degrees of freedom (DOF) resulting in 12 state variables. Consider 
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the position state vector of the wheel system as following: 



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Where rimx , rimy , and rimz are the translational coordinates of the wheel center in the global reference frame, rim

is the wheel rotation angel around global X axis, rim is the wheel rotation angel around global Y axis, and rim  is 

the wheel rotation angel around Z axis. Furthermore, the velocity state vector of the wheel system is  
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Where x
.

rim , 
rimy

.

, and rimz
.

 are rim center translational velocities along global X, Y, and Z axes described in the 

global reference frame. Also x , y , and z  are rim center rotational velocities around global X, Y, and Z axes 

described in the global reference frame. Therefore, the final state vector of the wheel is given as: 
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q

q
q
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rim
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rim

rim  (9)  

4.3 Tire belt 

If we discretize the tire belt circumference into segbeltN _ segments, the angle between the centers of each two 

segment will be  
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segbelt

seg
N _

2
   (10) 

Next, each segment is divided into elmsegN _ segment elements. The number of belt elements is assumed to be an odd 

number greater than three in order to always have at least one node at the middle of tire width and two neighboring 

nodes. Each segment element is actually a lumped mass with only translational DOF. Eliminating the rotational DOF 

from the belt segments helps reduce the computational effort of the model, while maintaining its accuracy. 

Consequently, the state vector for the segment elements is written as:  

segbelt

i
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i
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seg

seg Ni
q

q
q _,...,1
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  (13) 

4.4 Pressure effect 

The general behavior of the tire depends substantially on tire inflation pressure. As the tire is loaded, its stiffness 

increases non-linearly. Meanwhile, there is a constant term in load-deflection curves of the tire mass elements due to 

the inner pressure force. The air pressure results in a directional force on each of the mass points. This force is 

calculated using the following formula: 

actualtread

segments

belt
pressure Pwidth

n

r
F 





 (14) 

Furthermore, to include the pressure change effects on the tire structure, the tire stiffness in the radial direction is 

updated at each time step based on the tire inflation pressure: 
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


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



 21mod  (15) 

Where 1a  and 2a  are constant terms, which are specified based on curve fitting developed finite element tire model 

simulation results at different tire pressures. This procedure results in a look-up table, which is used for interpolating 

the relative stiffness of the tire in radial direction and at every normal load.  

4.5 Tire tread 

In order to incorporate the tread design, a certain number of brush elements are assigned to each belt element in 

a rectangular array. Consider an array of bristles with circtreadN _ elements in the circumferential direction and 

lattreadN _ elements in the lateral direction. As a result, the number of total sensor points assigned to each belt element 

will be: 

lattreadcirctreadtotaltread NNN ___   (16) 

Each brush element is a massless bristle that has translational stiffness in radial, longitudinal, and lateral 

directions. The base of these bristles is connected to each lumped mass (element segment), and the tip is touching the 

ground. This massless tip acts as a sensor point and can be used to detect the tire-road contact. Also, using the direction 

and value of the deflection in the bristle, the ground forces generated are calculated. Through implementation of the 

sensor points, we are able to increase the resolution of the contact patch by having more contact detection points at 

this area. At the same time, to define their velocities in space, these massless points only require extrapolation of the 

position and velocity of the nearby belt elements without the need for differential equations. Based on the findings of 

[5],there are only three state variables needed to describe the position of the brush tips in the space. These variables 

store the displacements of the brush tips in the global reference frame from previous iterations of the solver. Therefore, 

the state vector of each brush element will be: 






























circtread

lattread

ji

ji

ji

nm

jibrush
Nj

Ni
q

_

_

)3(

,

)2(

,

)1(

,

,

,
,...,1

,...,1







 (17) 
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Where m and n are the indices for the associated nth belt element in the mth belt segment. The final state vector of the 

system can be constructed as follows: 



















q

q

q

q

brush

seg

rim

total  (18)  

4.6 Initial position initialization   

The initial position of the rim is expressed in the global reference frame by: 

























z

y

x

ro

G

rim  (19) 

The initial position of the tire elements depends on the tire geometrical properties, as well as the rim initial camber 

and slip angles. Consider the tire element P, with the position vector rW
 described in the wheel local reference frame 

noted as C-Axis. If this reference frame rotates around global X, Y, and Z axes with  ,  , and   respectively, the 

coordinates of the point P in the global and in the rim local reference frames can be related using the equation:  

Gr = Rtotal
W r  (20)  

Where totalR  is the total transformation matrix after three consecutive rotations and can be calculated by multiplying 

individual transformation matrices for the rotation around each axis respectively:  

 ,,, ZXYtotal RRRR   (21) 

 

 

 

 





























cos

0

sin

0

1

0

sin

0

cos

,YR  (22) 

 
 

 
 















 



1

0

0

0

cos

sin

0

sin

cos

, 







ZR  (23) 
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 
 

 
  


























cos

sin

0

sin

cos

0

0

0

1

,XR  (24) 

The position vector of the jth element in the first tire segment is: 




























 
 elmseg

elmseg

j

W

seg y
N

j

radiustire

r _

_

,1

0

2

1

_

 (25)  

Where elmsegy _ is the lateral displacement between the centers of two adjacent elements in each tire segment: 

1

_

_

_



elmseg

elmseg
N

widthtire
y  (26) 

Consequently the local position of the jth element in the ith segment is: 

  j

W

segiYji

W

seg rRr
seg ,1,,    (27)  

Where seg is the angular difference between two adjacent belt segments: 

segbelt

seg
N _

2
   (28) 

The initial position of the jth element in the ith belt segment described in the global reference frame can be expressed 

as: 

    ji

W

segangleCamberZangleSlipZo

G

rimji

G

seg rRRrr ,_,_,,   (29)  

Finally, the initial state vector of the system becomes: 




















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

q

q

q

q
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seg

rim

total  (30) 
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4.7 Tire model kinematics 

In order to write the equations of motion for the rim and the lumped masses, the internal forces between the tire 

elements and the rim should be identified. The Kevin-Voigt force elements that connect tire belt elements to each 

other and to the rim generate the internal forces as functions of relative displacement and relative velocity of lumped 

masses with respect to the rim circumference. Therefore, formulating the model kinematics is essential for calculating 

the kinetics of the elements. In this section, a set of kinematic parameters that are required for writing the model 

equations of motion are introduced. 

The transformation matrix for the ith belt segment is defined as: 

 iYXZ

i

tot segrimrimrim
RRRR   ,,,  (31) 

For the un-inflated tire, the unity vector 
cw

Gr
i
 normal to the center of the ith  belt segment, which passes through the 

rim center is given as: 



















0

0

_ radiusTire

Rr i

toti

G

cw  (32) 

i

G

cw

i

G

cw
i

G

cw

r

r
r 
^

 (33) 

The vector from the rim center to the jth element of the ith belt segment of the tire is: 




























 
 elmseg

elmsegi

totji

G

cwo y
N

j

radiusTire

Rr _

_

,

0

2

1

_

 (34) 

cwo

G

r
^

i, j =
cwo

Gri, j

cwo

Gri, j
 (35) 

The relative position of the first belt element near the left sidewall in the ith belt segment from its projection on the rim 

is given as: 
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segbeltsegbelt Ni

G

rimNi

G

tirei

G

wtl rrr
__ ,,   (36) 

Similarly, the relative position of the last belt element near the right sidewall in the ith belt segment from its projection 

on the rim is given as: 

1,1, i

G

rimi

G

tirei

G

wtr rrr   (37) 

For the intermediate belt elements located between the first and last elements, which are directly connected to the rim, 

the relative position of each element from the center of its left and right neighbor elements are: 

1,...,2 _1,,,_   elmsegji

G

tireji

G

tireji

G

elmleft Njrrr  (38) 

1,...,2 _1,,,_   elmsegji

G

tireji

G

tireji

G

elmright Njrrr  (39) 

The relative position of the tread block center from its neighbor jth belt element is: 

icwji

G

tireji

G

tread rticknesstreadrr
^

,, _   (40) 

The local coordinate system at the center of the ith belt segment described in global reference frame is: 

icwji

G

tireji

G

tread rticknesstreadrr
^

,, _   (41) 

The position of the point P described at the local reference frame of the ith belt segment is:  

iiii

belt epepepP 332211   (42) 

Where  

 

 
icw

i

T

XZ

T

XZi

icw
i

icw
i

i re
RR

RR
e

re

re
e

rimrim

rimrim

^

3

,,

,,

2
^~

2

^~

2
1 ,

010

010
, 














 (43) 
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 (44) 

The tire structural stiffness and damping behaviors are simulated using the tire model Voigt elements. The force 

that is produced by a Voigt element is proportional to its length and the relative velocity between its two ends. The 

direction of this force is parallel to the element centerline. Therefore, the position and velocity of the force element 

tips relative to their bases should be calculated.  

The relative distance between a lumped mass in the jth belt element and its projected position on the rim, described 

in the ith belt segment local reference frame is expressed as: 

ijiijiijiji

belt eDTeDTeDTD 3

,

32

,

21

,

1

,   (45) 

Where  

r

e

e

e
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G
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T

i

i

iNi elmbelt








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




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
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


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
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 (46) 
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e

e

e
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

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
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
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
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1
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1

 (47) 

The relative distance between the center of the jth belt element and its left and right belt element neighbors, described 

in the ith belt segment local reference frame is given as: 

1,...,1 _,_

3

2

1

,

3

2

1












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
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
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





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





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T

i

i
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e
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 (48) 
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T
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Gr - right _ elm
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 (49) 

Relative velocity measurements  

WDT D = DT
·

1

i, j

×e1
i +DT

·

2

i, j

×e2

i +DT
·

3

i, j

×e3

i
 (50) 

 (51) 

 (52) 

 (53) 

 (54) 

Where 

 (55) 
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 (56) 

Velocity of a point located at the projection of the jth belt element in the ith belt segment on the rim circumference, and 

described in the ith belt segment local reference frame is: 

ji

G

circrim

T

i

i

i

ji

W

circrim v

e

e

e

v ,_

3

2

1

,_ 

















  (57) 

jicworimrimji

G

circrim rvv ,

^~

,_   (58) 

4.8 Tire model kinematics 

The components of the left sidewall force vector between ith belt segment and the rim are calculated as: 

   
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
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
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_
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W
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e
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 (59) 

Where carcassh is the tire carcass height, 1tk is tire sidewall tangential stiffness, 1tc is tire sidewall tangential damping, 

2tk is tire sidewall lateral stiffness, 2tc is tire sidewall lateral damping, nk is tire sidewall radial stiffness, and nc is tire 

sidewall radial damping. The resultant force that is applied to the ith belt segment by the rim from the left sidewall is 

given as 

sidewall

WFLi, j = FL1

i +FL2

i +FL3

i
 (60) 

Similarly for the force vector in the right sidewall between tire and the rim we have: 
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 (61) 

The resultant force that is applied to the ith belt segment by the rim from the right the sidewall is given as: 

sidewall

WFRi, j = FR1

i + FR2

i + FR3

i
 (62) 

Next, the force components within the belt segment that are generated between the neighboring belt elements are 

calculated. The forces exerted to the jth belt element in the ith belt segment by its neighboring elements are: 

   
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Where beltK  is the tire belt stiffness matrix and is defined as: 
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In the tire belt mass matrix, 1btk is the tire belt inner-tangential stiffness, 2btk is the tire belt inner-lateral stiffness, 

and bnk is the tire belt inner-radial stiffness. Moreover, beltC is the tire belt damping matrix, which is defined as: 
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In the tire belt damping matrix, 1btc  is tire belt inner-tangential damping, 2btc  is tire belt inner-lateral damping, and 

bnc  is tire belt inner-radial damping. The total force vector that exerted to the jth belt element in the ith belt segment 

from its neighbor elements can be identified as:  

WFBi, j = FB1

i, j +FB2

i, j + FB3

i, j
 (66) 

Therefore, the total structural forces on the jth belt element in the ith belt segment is given as: 

structure

WFi, j = WFBi, j + sidewall

WFLi, j + sidewall

WFRi, j  (67) 

Finally, the total internal force that is applied to the belt element can be written as: 

internal
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0
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ù
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+ F i, j rtire,t( ) ×e
^

3  (68) 

The torque from the tire ith belt segment to the rim is written as: 

 (69) 

Where  

 (70) 

After calculating the individual force components applied to each lumped mass, we can write the equation of motion 

such as: 

 FFFF
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For simplicity, the rim is considered as a spatial rigid body. As a result, three translational and three rotational 

DOF are used for describing its motion: 

  i

belt

G

rim

G FFFrm
..

 (73) 

 i

betrim

G MMMJ
..

  (74) 

Where Frim is the applied force vector to the rim center, 
i

belt F is the structural force from the ith belt segment, Mrim

is the applied torque vector to the rim center, and 
i

belt M is the applied toque vector from ith belt segment to the rim 

center, and is given as: 
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The rim translational dynamics is represented in the global reference frame as follows: 
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Consequently, rim translational equations of motion expressed in the rim local reference frame are given as: 
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With the following vector form: 
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The applied forces to the rim center consist of the axle forces and suspension forces: 

FFF G

suspension

G

axle

G

rim   (79) 
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Next, the rotational dynamics for the rim is studied. The applied moment to the rim from the axle, described in the 

rim local reference frame, is given as: 

  W

rim

W

rim

W

rimzyx

W

rim IIkMjMiMM 
^^^

 (80) 

Where W

rim  is the rim angular velocity vector, and I is the inertia matrix, which is written as: 



















zzzyzx

yzyyyx

xzxyxx

III

III

III

I  (81) 

Additionally, the components of the torque vector are described as: 

     xzyxyzxyzyzzyzzyyzxzyxyxxxx IIIIIIIIM   22
...

 (82) 

     xyzyzxyzxxzzxxxzzzyzyyyxyxy IIIIIIIIM   22
...

 (83) 

     yzxxzyzxyxyyxyyxxzzzyzyxzxz IIIIIIIIM   22
...

 (84) 

If we assume the orientation of the rim such that 0ijI when ji  , the rim coordinate system becomes a principal 

coordinate frame and the moment vector components are identified as: 

  zyzzyyxxxx IIIM  
.

 (85) 

  zxxxzzyyyy IIIM  
.

 (86) 

  yxyyxxzzzz IIIM  
.

 (87) 

Consequently: 

  







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.... 1
 zzyyx
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I

 (88) 
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 (90) 

The equations for the sidewall moments that exist between the belts segments and the rim are expressed in the 

wheel local reference frame. In order to express these equations in the global reference frame, the following 

transformation matrix is used: 

       tZtXtZrim RRRtR  ,,,  (91) 

It should be noted that the transformation matrix in (91) is a function of time, and is recalculated at every time 

step based on the spatial orientation of the rim. The final moment vector at the spindle form the tire sidewall, expressed 

in global reference frame is calculated as: 

  iB

sidewallrim

iG

sidewall MtRM   (92) 

Where MB

sidewall is the sum of individual torque vectors applied by the belt segments to the tire: 

 



segbeltN

i

iB

sidewall

B

spindle MM
_

1

 (93) 

5 Tire model parameterization 

The tire model parameterization is defined as the set of experiments and data processing methods that are 

performed to acquire the input parameters for the tire model simulation. There are different methods that can be used 

for tire parameterization. These methods range from completely empirical to semi-empirical methods. For the model 

developed in this study a complete set of tire parameterization methods for individual parameters is proposed. In 

Figure 4, the types of parameters that can be obtained from each set of tests are shown. 
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Figure. 4 - Tire parameterization procedures which are used for defining the tire model parameters (gray 

rectangles), and tire parameters resulted from post-processing of each set of tests (light blue rectangles). 

 
In the tire model developed in this study, the stiffness and the damping characteristics of the tire are considered 

to be different for in-plane and out-of-plane directions. As a result, during the loading of the tire in the vertical 

direction, for example, the slope of the tangent line to the loading-deflection curve is not just due to the in-plane radial 

stiffness of the tire. Therefore, for measuring different stiffness and damping parameters of the model, depending 

solely on standard measurement procedures is not always effective. Furthermore, conducting a wide variety of tests 

on the tire in different configuration, such as axial and tangential loading, tire relaxation time measurements, and cleat 

tests requires a large amount of time and resources, which may not always feasible.  

Having these limitations in mind, a finite element model (FEM) of the tire has been implemented [14, 15], which 

can be used for simulating virtual parameterization tests, as well as for the validation of the lumped mass soft-soil tire 

model simulations. As mentioned previously, the tire tread is not considered in the initial version of the FEM model 

to make the validation of the lumped mass model easier. Some material properties of the FEM model were obtained 

from the manufacturer documentation; the rest of the required properties were obtained through experimental tests 

done on a similar tire by other researchers [24]. The FEM model validation based on Tire Model Performance Test 

(TMPT) data is done qualitatively and quantitatively. The details of the TMPT program will be explained in the 
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“Experimental study” section. In the qualitative method, the trend of the data with different parameter changes is 

studied. The quantitative approach compares measured data from two similar simulations done with different methods. 

The finite element model is initially compared with steady-state experimental data. In this regard, the modal analysis 

test is performed in order to extract tire mode shapes and associated natural frequency and damping values. The 

schematic of the test rig which is used for conducting the modal analysis experiments on the tire is illustrated in Figure 

5.  

 
Figure. 5 - The modal analysis test rig used for extracting the tire natural frequencies and damping values. 

These values are used accordingly to parameterize the tire material model. 

 
The natural frequencies and damping values for the radial modes (R) and transverse modes (T) of the unloaded, 

non-rotating tire are compared to the experimental values obtained from the TMPT data. The results are shown in 

Table 1. 

Table 1. Comparison between modal analysis simulation test results and experimental data. 

 Natural Freq. (Hz) Damping % 

Modes ABAQUS Test Error ABAQUS Test Error 

T0 47.54 47.20 0.72 0.023 0.021 9.52 

T1 55.85 61.40 9.04 0.031 0.029 6.9 

R0 79.35 81.77 2.96 0.066 0.068 2.94 

R1 87.60 97.35 10.01 0.041 0.044 6.82 

T2 104.68 116.02 9.77 0.038 0.036 5.56 

R2 124.74 122.93 1.47 0.027 0.032 15.63 

R3 145.17 149.47 2.87 0.02 0.024 16.67 

R4 165.48 176.64 6.31 0.021 0.024 12.5 
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It can be seen that in most of the modes, the FEM model results correlate with the experimental data within a 

reasonable error margin. Meanwhile, the model slightly underestimates most of the natural frequencies and radial 

damping values; on the other hand, it overestimates the transverse damping values. The natural frequencies and 

damping values are further processed in order to find the force elements, stiffness and damping values in different 

directions (lateral, radial, longitudinal, inner element, etc.). 

Additionally, the dynamic loading radius of the tire is measured using the optical distance measuring sensors 

implemented inside the tire.  Footprint of the tire on a flat rough surface is measured through pressure pads, and the 

stiffness of the tire in radial direction is obtained from tests for which the tire is loaded using hydraulic shakers and 

vertical reaction forces are measured through the force hub at the tire spindle in the Terramechanics rig [40]. The 

configuration of the test rig and the design of experiment procedures are presented in a separate publication [41]. 

6 Tire-terrain interaction 

Once the tire structure and tire material properties are modeled and implemented in a mathematical framework, 

the interface between the model and road surface should be established. This interface searches for the nodal points 

that are close to the ground (contact search algorithm), and once the contact is detected the algorithm applies the 

required contact condition (contact interface algorithm). The detailed description of the tire-terrain interaction model 

is outside the scope of this paper, and is presented in the companion paper [5]. 

7 Results and discussion  

In this section initially we start with a benchmark simulation that demonstrate the dynamic capabilities of the 

HSSTM model. As it was explained in the tire-terrain interaction section, when the tire is traveling over the terrain, 

the ground under the contact patch gets deformed. If, for the second time, another tire travels on the same path, it will 

experience a different amount of resistance from the ground. Furthermore, the elastic and plastic deformation of the 

terrain would differ during loading and unloading. To visualize this behavior, the deformation of the ground (sandy 

loam) after two consecutive tire passes is illustrated in Figure 6. 
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Figure. 6 - Simulation visualization for the multi-pass effect of a sandy loam terrain. 

 
In this simulation, the tire starts traveling over the terrain in a straight line, and deforms the terrain surface, 

creating a rut. Next, the tire continues on a second path, which is perpendicular to the first path. Because the HSSTM 

is a nonlinear system, the tire elements go under different states of normal and tangential stresses. As a result, the 

permanent plastic deformation of the ground after the tire passage is uneven. This deformation has larger value at the 

crossing section of two paths, which has gone through deformation twice. However, this deformation is less than twice 

the value of the rut depth on the soil sections negotiated over only once. The mechanical properties of the mineral 

terrain which is used for conducting this simulation is same as the Medium terrain shown in Table 2.  

When the tire is moving on a deformable terrain under an applied torque at its spindle, the positive shear forces 

keep pushing the tire forward, while the negative ground forces (rolling resistance, bulldozing force, etc.) resist the 

tire motion. The resultant force is called the drawbar pull, which is an indication for the ability of a vehicle to pull/push 

external load, accelerate, or overcome the grade resistance. Consequently, in calculation of the drawbar pull, both 

motion resistance due to tire flexing and the one due to soil compaction are included. To normalize this parameter, it 

is divided by the normal load at the spindle, thus obtaining the drawbar pull coefficient. The drawbar pull coefficient 

explicitly relates the tire tractive performance to the wheel slip ratio and implicitly to the terrain normal and shearing 

characteristics. Using the developed model, the drawbar pull coefficient is calculated at four slip ratio values and on 

three selective terrain types, which are called soft, medium, and hard soils. The slip ratio is calculated by normalizing 

the wheel slip velocity with the carriage longitudinal velocity:  
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V

V
  (94) 

Where effR is the wheel effective rolling radius and  is the wheel rotational velocity. The slip ratio values are 

maintained at their nominal values using a PID controller that regulates the applied torque to the spindle. The terrain 

mechanical properties used for the simulated terrains are documented in Table 2.  

TABLE 2 – Mechanical properties of three mineral terrains used for simulations. 

 Bekker’s equation Moisture 
content 

(%) 

Shear characteristics 

Soil Type n  

   cK  









1nm

kN

 

K  









1nm

kN

 

 RS 










s

cm  

C 









1nm

kN  

Φ 
 deg  

K 
   

Soft terrain 
(LETE soil) 

0.611 1.16 475.0 0 2.5 1.15 31.5 - 

Medium terrain 
(Upland sandy 

loam) 
0.74 26.8 1522 44.3 2.5 2.7 26.1 0.45 

Hard soil 
(Grenville loam) 

1.01 0.06 5880 24.1 2.5 3.1 29.8 0.40 

 

The results of this simulation that indicate the effect of the terrain properties on the mobility performance of the tire 

are presented in the Figure 7. 

It was observed that increasing the stiffness of the terrain could increase the peak of the drawbar pull coefficient 

in addition to its asymptotic value at high slip ratios. The difference between the drawbar pull coefficient on the hard 

and medium soils decreases drastically with increasing the slip ratio. This is expected to be a direct effect of the K  

parameter variations. As it was discussed earlier, K  is the shear deformation parameter and is a measurement of the 

magnitude of the shear displacement required for developing the maximum shear stress in the soil. The low slip ratio 

region is highly affected by the shear deformation parameter K , whereas the high slip ratio region is almost 

insensitive to the its variations [42]. Therefore, the hard soil, with a lower K  value, shows higher drawbar pull 

coefficients at low slip values, and the difference attenuates by approaching the high slip ratio region. An analogous 

trend for the drawbar pull values measured on the similar terrains was reported by other researchers [26]. 
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Figure. 7 - Tractive performance of the buffed tire simulated at four slip ratios and three different soil 

conditions.  

 
In order to characterize the configuration of the test rig in the simulation environment, an application platform is 

designed in order to accommodate the communications with the multibody dynamics solver. The spindle carriage is 

represented using a quarter car model, and is implemented in a separate module, which has its own ODE solver. At 

every time step, the vehicle model, which is described in a multibody dynamics framework, provides the wheel 

kinetics and kinematics variables to the tire model. The time step for the tire model solver is chosen as half the time 

step set for the multibody dynamics solver. This is due to the fact that extra calculations are performed in the middle 

of the fixed time intervals to improve the accuracy. These extra calculation results are provided to the external solver 

for maximizing the ODE solver performance. Next, the tire model updates the position and velocity state vectors of 

the tire. Using this new tire configuration, the terrain model exploits the contact conditions, which results in the 

tire/ground deflection and stress distribution in the contact patch. The normal and shear stress fields are feedback to 

the tire model, which are used for solving the tire equations of motion. At the end of this step, the tire model calculates 

three forces and moments at the spindle and feeds them back to the vehicle model. An overview of the discussed 

procedure is shown in Figure 8. It should be noted that a great attention is given to the optimization of the tire model 

performance in order to make it a practical option for full vehicle simulations. This has become possible by applying 

some parallelization and multi-processing techniques to the architecture of the program. Additionally, as for the tire-

vehicle interface, the data communication routines are developed such that they follow the standard formats from 

Standard Tire Interface (STI) practices. 
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Figure. 8 - The communication data flow between the tire model modules during the full vehicle simulation.   

 
The vehicle handling and rollover behavior are directly affected by the force and moments at the wheel spindle. 

In this regard, the longitudinal force, the lateral force, and the aligning moment values are the quantities of interest 

because they define the planar motion of the vehicle. In order to validate the developed model based on these system 

response quantities, a straight line driving maneuver is designed. In this test, the tire carriage is moved with the 

constant longitudinal speed of 0.5 m/s while a normal force of 4,000 N is maintained at the spindle. Meanwhile, the 

applied driving torque at the spindle is increased with a constant rate to allow the wheel slip ratio changes from 0 % 

to 60 %. All the forces and moments are measured at the spindle, and the wheel sinkage is calculated using a novel 

method developed by Naranjo [33]. In this method, the wheel sinkage is calculated by post-processing the data from 

the sensors that are implemented inside the tire cavity. These sensors are integrated units composed of a position 

sensitive detector (PSD), five infrared emitting diodes (IREDs), and a signal processing circuit. The similar test 

configuration is designed using the developed tire model platform, and simulation runs are conducted at the input 

conditions identical to the experimental test setup. The tire used for conducting the tests is a P225/60R16 97S Radial 

Reference Test Tire from Michelin. The tire tread is buffed in order to study the performance of the treadles tire.  

The validation of the tire model response quantities versus the measurement data is done using the cross plot 

validation charts.  For every parameter, simulation results are plotted versus the test data across the entire simulation 

time span. Next, a linear line is curve-fitted to the resulted data points, and is plotted on the same figure. The validation 

results for four main response quantities, including sinkage, longitudinal force, lateral force, and aligning moment are 

shown in Figures 9 to 12. The ideal case would be for all the data points to line up on the green curve-fitted line and 

for this line to match the 1:1 red dash line. However, due to errors such as measurement errors, modeling errors, and 

parameterization errors, this ideal situation is almost impossible to achieve. To assess the quality of the match, curve-

fitted line properties including the slope, intersection with the Y axis and coefficient of determination (
2R ) are shown 



Journal of Terramechanics Page 34 of 40 

 

UNCLASSIFIED 

on the figures. For a perfect match, two main parameters of interest, which are the line slope and the 
2R index would 

be equal to one. The
2R index is an indication of how the data is distributed around the curve-fitted line; so, for a 

completely scattered data, this value will become zero.  

 
Figure. 9 - System response quantities cross-plot validation: wheel sinkage 

 
Looking at the sinkage and the longitudinal force validation plots suggests that the HSSTM model can do a good 

job in estimating these parameters. The solid green curve-fitted line in the sinkage plot starts to deviate from the 1:1 

line as the sinkage increases, and always remains below the red dashed line. This means that at higher sinkage values, 

the measured sinkage value is greater than the simulation results. The higher sinkage values occur at higher slip values, 

at which the tire starts to displace large volumes of soil particles and dig into the terrain. Considering the fact that the 

soil volume displacement model is not used in this simulation can justify the trend of the sinkage cross-plot results. 

As for the longitudinal force, the model represent a good performance in estimating the measurement data.  
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Figure. 10 - System response quantities cross-plot validation: longitudinal force at the spindle 

 
As shown in Figures 11 and 12, although the test runs are performed in a straight line, the lateral force and the 

aligning moment values change during these maneuvers. This can be explained by considering the following facts: (1) 

when the tire is traveling on a solid, non-deformable ground, it produces a lateral force and an aligning moment. This 

results from the plysteer and the conicity in the tire construction. The effect of these manufacturing defects is modeled 

as a pseudo slip angle (for plysteer) and a pseudo inclination angle (for conicity). The pseudo slip angle and the 

inclination angle (camber angle) cause the residual lateral force and aligning moment to appear in the straight line 

maneuvers; (2) The ground surface is not fully flat and does not have identical mechanical properties in all directions 

(non-isotropic). Therefore, once the tire deforms the terrain, the ground reaction force would not be parallel to the 

wheel direction of motion. This inclined reaction force produces a component perpendicular to the wheel plane. 

Additionally, when the tire sinks into the ground, soil pressure distribution is applied to the tire sidewalls from the 

accumulated soil pile that is displaced out of the tire path. This force is known as bulldozing force, and contributes to 

the lateral force and, consequently, to the aligning moment generation. The wheel carriage in the Terramechanics test 

rig is located near the right wall of the experimental test rig. Therefore, the soil is piled up near the wall edges, and 

produces a pressure gradient on the tire sidewall that shifts the generated lateral force values. This effect can be 

observed in the shape of the lateral force cross-plot data points. As shown in Figure 11, most of the blue data points 
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are speeded below the green solid curve-fitted line, which means that model underestimates the lateral force values 

throughout the simulation. 

 
Figure. 11 - System response quantities cross-plot validation: lateral force at the spindle 

 
FIG. 12 - System response quantities cross-plot validation: aligning moment at the spindle 
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8 Conclusion 

In order to model the dynamic behavior of the tire on soft soil, a lumped mass discretized tire model using Kelvin-

Voigt elements is developed. This model, named HSSTM, is developed to be easily linked with multibody dynamics 

software packages to simulate vehicle performance on deformable terrains. To optimize the computational time of the 

code, different techniques were used in memory allocation, parameter initialization, code sequence, and multi-

processing. The computational time of the code had a significant improvement relative to previous codes developed 

in this institute up to the speed of real time simulations. 

The tire parameterization is performed using a reduced finite element tire model for the same tire, modal analysis, 

and other experimental test procedures.  In the parameterization step sensitivity analysis tools were incorporated in 

order to reduce the complexity of the model, and fit more accurate parameters values based on the test data.  

Experimental tests were performed on the Terramechanics rig at the Advanced Vehicle Dynamics Laboratory at 

Virginia Tech using the P225/60R16 97S Radial Reference Test Tire from Michelin. The tests were performed on 

sandy loam, and data were collected for various case studies and parameter changes.  

Different case studies were simulated in order to analyze the performance of the developed model. Initially, a soil 

multi-pass effect simulation is conducted to demonstrate the functionality of the model. Next, the tire drawbar pull 

coefficients on three selective terrains are estimated. It is shown that the drawbar pull coefficients are mainly 

influenced by the terrain stiffness and shear deformation parameter. As for the validation case studies, a straight line 

driving maneuver is conducted at constant normal load and varying slip ratio values. Using the cross-plot validation 

graphs it is shown that the HSSTM can estimate four main vehicle handling parameters including longitudinal force, 

lateral force, aligning moment, and sinkage with a reasonable accuracy. The observed discrepancies are thought to be 

mainly from the test conditions that are not modeled in the simulations, such as soil displacement at high slip ratios, 

tire construction defects (plysteer, comity), and soil bulldozing effect due to the soil compaction near the walls of the 

test rig. 
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